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Synopsis 

Microphase separation occurs in many block copolymers to give do- 
main structures. In this first paper in a series dealing with domain for- 
mation and the consequences thereof, a theory is presented for the for- 
mation of spherical domains in A-B block copolymers. The theory es- 
tablishes criteria for the formation of domains and their size in terms of 
molecular and thermodynamic variables. It is shown that the consider- 
able loss in configurational entropy due to the constraints on the spa- 
cial placement of chains in a domain structure requires that the critical 
block molecular weights required for domain formation are many-fold 
greater than required for phase separation of a simple mixture of the com- 
ponent blocks. The relation between domain radius R and molecular 
dimensions is obtained from the requirement that space in the domain 
must be filled with a constant density of segments. Segment densities 
are evaluated from solutions of the diffusion equation, treating the con- 
straints on chain placement as boundary value problems. This gives the 
relationship R = 413 <L‘>’”, where <L2>’/‘ is  the root-mean-square 
end-to-end chain length. Because of chain perturbations in a domain 
system, <L’>’/‘ is  larger than the unperturbed value <L‘>;” normal- 
ly expected for bulk polymers. A means to evaluate the perturbations is  
shown. The agreement between the predictions of the present theory 
and the limited published experimental information appears quite satis- 
factory. 

INTRODUCTION 

A remarkable increase in interest in block copolymers has occurred 
in  the past few years, probably inspired by the realization that new 
types of technologically important materials are possible by use of block 
copolymers, e.g., thermoplastic elastomers (1). The thermally reversible, 
physical “crosslinking” that occurs in  the thermoplastic elastomers is 
generally recognized to result from a unique type of microscopic phase 
separation in which complete aggregation of the separate phases does 
not occur, in contrast to ordinary phase separation. The formation, size, 
shape, etc., of the microscopic phase regions, which wil l  be called 
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Fig. 1. Electron micrograph of S-I film. 
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domains, are functions of such molecular properties of a block copoly- 
mer as the nature of the block components, molecular weights, distribu- 
tion of the blocks, etc. This paper is the first in a series concerning 
block copolymers in which theories of domain formation and the conse- 
quences thereof will be developed. 

In this paper, we confine our attention to the simplest type of block 
copolymer, namely an A-B type in which the molecular weight of one 
component, A, is much less than that of the other. This stipulation en- 
sures that the A-component will be the dispersed, domain-forming com- 
ponent and also fixes the domain shape. Our theoretical work on domain 
shapes (to be presented in a subsequent paper) and experimental evi- 
dence both show that the equilibrium domain shape is spherical when 
the component block molecular weights are greatly different and the 
components are amorphous. Other shapes, e.g.. planar, cylindrical, etc., 
can, however, be the stable forms under other conditions (2,3). Figure 
1 shows an example of the spherical domains formed from an amorphous 
block copolymer in which the block molecular weights are greatly differ- 
ent. This figure is an electron micrograph of a very thin f i lm of a sty- 
rene-isoprene (S-I) block copolymer of 15,OO0-75,000 block molecular 
weights. The film was prepared by evaporation of a very dilute benzene 
solution of the block copolymer, followed by shadowing, and shows 
spherical domains of polystyrene projecting above the surface of the 
film. The domain diameters are approximately 260 8.  

MODELANDAPPROACH 

The model domain structure to be treated in this paper is shown in 
Figure 2 (in which only a few of the chains that make up a domain are 
shown). The domain is assumed to be spherical, consisting predomi- 
nately of the A component and is imbedded in a matrix of the B compo- 
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Fig. 2. Model domain structure. 

nent. It can be shown that the “phases” that form in a domain system 
will be essentially pure, just as with phase separation of two mixed 
homopolymers in which the phases that form are almost pure homopoly- 
mers. Only at the domain surface will there be a thin region in which A 
and B segments remain mixed. This region will contain the junction be- 
tween the A and B blocks. The surface of a domain is relatively well 
defined, as confirmed by electron microscopy. 

The following additional assumptions are made for simplicity; none 
are thought to be unduly restrictive nor unrealistic: (a) random-flight 
statistics are applicable, with perturbations allowed for by the use of 
the familiar isotropic chain expansion parameter a (4), (b) A and B seg- 
ments are equal in size, (c) the polymers are amorphous, and (d) the 
block molecular weights of each component are uniform. 

The basic difference in a treatment of block copolymers are opposed 
to simple homopolymers or random copolymers is the additional compli- 
cation that arises from the constraints that restrict the components to 
separate regions of space, i.e., in the domain structure the A component 
is constrained to stay within the domain and the B component to stay 
out. These constraints, of course, restrict the number of configurations 
available to the chain with a concomitant reduction in the entropy of the 
system. Rather than evaluate the number of configurations (and hence 
the entropy) with these constraints by the usual lattice-type model, we 
avoid this almost hopelessly complex approach by treating the con- 
straints as a boundary value problem, using the diffusion equation to 
generate the applicable chain statistics (5,6). 

’ 
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DOMAIN SIZE 
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It has been mentioned that the size of a domain is fixed by molecular 
chain dimensions. The reason is obvious as Figure 2 will  show. If 
the A-B junction is fixed near the domain surface, the domain cannot 
grow without limit since then space near the center of the domain could 
not be filled with A segments. A vacuole or region of low density is a 
region of very high energy and wil l  not occur. In fact, we take as  the 
criterion to evaluate domain sizes in terms of molecular variables that 
the density of segments in the domain be constant. In the use of this 
criterion, we are assuming that of the terms relating the free energy of 
the system to domain size the term associated with density is of over- 
riding importance. 

We require an expression for the (number) density of segments within 
the domain as a function of the ratio of domain size to molecular chain 
dimensions. That ratio which gives the most constant density of seg- 
ments will then be taken as the predicted relationship between domain 
sizes and molecular dimensions. 

We obtain the segment number density in the domain by first solving 
the diffusion equation for the probability W(n; T, F’, R) of finding the 
free end of a subchain of n elements a t P  when the first end is fixed at 
T’and all segments are constrained to stay within the spherical region 
of radius R.  The origin of the coordinate system wil l  correspond to the 
center of a domain. The number density p (uA; T, T’, R) of an A chain 
having a total of uA segments is then obtained by summing W (n; T, T’, R) 
over n ,  i .e.,  

(JA 

p ( 0 A ;  T, T’, R) = C W (n; Y, T’, R) (1) 
n =1 

The diffusion equation in the form applicable to the present problem 
is 

where 1 is the length of a statistical segment. The boundary condition 
for this problem is W (n; R ,  T’, R) = 0,  which removes from the ensemble 
of configurations those in which any segment of the chain has reached 
R ,  i.e., the surface is an absorbing barrier. The remaining configura- 
tions are given proper statistical weight by renormalization (5 ) .  

Equation (1) gives the number density of a single chain in the domain 
space. The total segment density i2(uA; T, R) is obtained by summing 
a t 7  the number densities p(uA;T,T:R) of the many chains that make up 
a domain. This summation requires specification of the placement T’ of 
each chain origin. We have carried out the summation for 24 chains 
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whose origins were equidistant from one another on the surface of a 
sphere, with results showing that the angular variation in total segment 
density becomes very small for this packing density of chains because 
of overlap of adjacent molecules. Since the packing density in a do- 
main will, in general, be even greater than that used here, we may ig- 
nore the angular variables and consider only the radial variation in total 
segment density. With this simplification, the total number segment den- 
sity Q at r becomes from eqs. (1) and (2) 

where qa is the number of A chains in  the domain. 
Equation (3) has been evaluated with an IBM 7040 computer for vari- 

ous values of r/R, r'/R, and ~ ~ l ' l R '  and for U A  = 20 and U A  = 100 sta- 
tistical elements. Normalized chain densities a' = ( ~ R ' / U A V A )  52 were 
found to be independent of these values of mA. Since our domain model 
places the origins r' of the A chains near the domain surface, we have 
restricted r'/R to the range 0.8-1.0. For r' R > 0.9, segment densities 
were found to be negligibly dependent on the value chosen for r'/R. 
Since we shall later take r'/R to be greater than 0.9, we shall show re- 
sults for only one value of r'/R, namely 1.0, to avoid clutter in the figure. 

Figure 3 shows the relative segment densities Q'(o,; r ,  R) = (4RS/ 
uAqA) Q ( u A ;  r, R) as  a function of the radius r/R and for several values 
of ( o ~ ~ ' ) ' / ~ / R ,  i.e., the ratio of the rms end-to-end chain distance of a 
free chain to the domain radius R. Also shown in the figure is a curve 
giving the desired relative density of segments that would be, obtained 
if the density of segments in  a sphere were constant to r/R = 0.9 and 
then linearly decreased to zero at r/R = 1.0. The region 0.9 < r/R < 1.0 
is taken to represent the interfacial region in which A and B segments 
are intermixed, with the A segment density decreasing from its uniform 
value characteristic of the "pure" A interior of the domain to zero at 
the surface. The B segment density, of course, increases in this model 
from zero at r/R = 0.9 to its "pure" value at r/R = 1 .O. The particular 
value r'/R = 0.95. which gives the thickness AR/R = 0.1 to the inter- 
facial region, is used here to be consistent with a later choice, but the 
value has little influence on the present evaluation of the relationship 
between domain size and molecular dimensions. 

In Figure 3 ,  we see that the present model does not give the desired 
constant density of segments throughout the domain for any value of 
(U"')'''/R. Obviously in a real domain there must be chain perturba- 
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Fig. 3. Relative density of segments. 

tions which smooth out these variations in segment densities that occur 
for purely random-flight statistics. The problem is now to choose, that 
value of (0A12)l "/R which minimizes the chain perturbations or move- 
ment of segments required to obtain constant segment density. A rigor- 
ous solution of this problem would be quite difficult, although possible 
by using the diffusion equation modified by a biasing potential. Rather 
than introduce this complexity, we take a simplified approach and mini- 
mize the absolute deviations from the desired density 
main, i.e.. the expression 

over the do- 

is minimized as  a function of (uAle)1'2/R. The absolute value of the 
density difference is minimized rather than, say, the mean-square differ- 
ence, since the number of segments that must be moved achieve con- 
stant density is directly proportional to the density difference. The 
above function has a minimum for (UJ')''~/R 2 0.75, which is now 
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adopted as giving the desired relationship between domain radii and 
chain dimensions, i.e., R = 413 (gA12)’”. However, this expression 
is still not adequate to enable prediction of domain radii in terms of 
molecular weights, even though the constant K in the relationship 
< 0 1 ~ > ~ / ~  = KM’/e between unperturbed rms end-to-end chain dimen- 
sions for a bulk polymer and molecular weight is known. The domain 
system has additional chain perturbations which do not exist in a bulk 
polymer and which must be evaluated before predictions of domain size 
can be made. If the ratio of perturbed to unperturbed chain dimensions 
is  represented by a (4), then we may write 

A method to evaluate a is presented in the following section which then 
allows prediction of R as a function of M A  (if K is known). 

THERMODYNAMICSOFA-BBLOCKCOPOLYMERS 

The free energy difference AG between a random mixture of block co- 
polymer molecules and the domain system can be separated into several 
entropic and enthalpic contributions. First, the restriction on the place- 
ment of the A-B junctions to the interfacial regions of domains de- 
creases the entropy relative to random placement. This entropy de- 
cream will be termed the “placement entropy” difference AS, and will 
be evaluated by a lattice model. Second, the constraints on the place- 
ment of the A and B segments in the domain system (to the inside and 
outside regions of the domains, respectively) also reduces the entropy 
of the domain system relative to a random mixture. This entropy differ- 
ence wi l l  be termed the “restricted volume” entropy difference AS, and 
w i l l  be evaluated by generation of the applicable chain statistics with 
the diffusion equation. Third, the perturbation of chain dimensions in 
the domain aystem Prom their random-flight values also decreases the 
entropy. This wil l  be called the “elasticity entropy” difference ASe1 
and will be taken from standard elasticity theory. 

The enthalpy difference AH between the domain and random mixture 
systems will be taken as the heat of mixing of a simple mixture of A 
and B molecules, i.e., the fact that the component blocks are joined to- 
gether: in the block copolymer is ignored. In a random mixture of A-B 
molacules, the effect of the A-B junction on the relative number of like- 
and unlike-segment interactions can hardly extend more than a few seg- 
ments away from the junction. The errors introduced by ignoring this 
effect are trivial compared to those inherent in the pair-interaction mod- 
el (4) used to evaluate AH. 

The “residual” interaction of the A and B segments at the domain 
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surface will be treated as a surface free energy G, and characterized by 
an interfacial tension y .  This interaction energy could, in principle, 
also be obtained from the pair-interaction model, but would require know- 
ledge of the distribution of A and B segments i n  the interfacial region. 
It appears simpler to treat the interaction as a surface energy. 

Placement Entropy Difference ASp 

We evaluate here the entropy difference between the random placement 
of one segment per molecule (the junction segment) on a lattice and the 
placement of the segment on a lattice of domains in which the segment 
is restricted to a domain surface. It is emphasized that at this point we 
are concerned with only one segment per molecule and are not concerned 
with the configurational entropy of the remaining segments. 
A random mixture of N A B  copolymer molecules having UA and U B  A 

and B segments, respectively, has N A B ( u A  + oB) total lattice sites 
available. The number of possible sites available for the first segment 
of the ich molecule after i - 1 molecules have been placed on the lattice 
is ( N A B  - i + 1) (OA + oB). Thus the total number of distinctive ways 
O1 of placing one segment each of N A B  identical molecules on the lat- 
tice is 

1 N A B  
N A B  n, =- n 

NAB!  i= i  
( N A B  - i + ~ ) ( u A  + OB) = ( D A  +OBI  

and the entropy Sl associated with n1 is S1 = N A B k  In (UA + UB).  

In the domain system, we assume that the interfacial region of a do- 
main is divided into 7 cells, where 7 is the number of molecules in a 
domain, and only one AB junction wil l  occupy the lattice sites within a 
cell, i.e., multiple occupancy by the origins of the A and B chains (their 
junction) is prohibited. This assumption appears reasonable since the 
density of segments from a given molecule is greatest near the chain 
origin and thus to maintain constant density the origins wil l  tend to be 
as far away from one another a s  possible. If the junction segment is 
restricted to an interfacial region of thickness AR, then each molecule 
added to the system wi l l  fill 3 0 A  AR/R sites. This follows from the 
number of lattice sites on a domain surface 4nR2 AR/v, where v is the 
volume required for a segment, and the domain volume 4/3 r R s  = V,V. 

In this last equation, we have neglected the small contribution of B seg- 
ments to the domain volume. After i - 1 molecules have been placed in 
domains, the number of sites available on the domain surfaces to place 
the iChmolecule is merely ( N A B  - i + 1) ( 3 0 A  AR/R). If the probability of 
placing a junction segment on a lattice site within a cell is equivalent 
for all sites, then the number of ways Q2 of placing the junction seg- 
ments of N A B  identical molecules on the domain surfaces becomes 
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N A B  
a, =- II ( N A B  - i + 1)(3uA ARIR) = ( 3 0 A  A R / R ) ~ ~ ~  

N A B !  i = 1  

and the entropy becomes 

This probably represents an upper limit to the placement entropy on the 
domain surface since it appears likely that our assumption of equal prob- 
ability of all sites within a cell overestimates because of the tend- 
ency of the chain origins to avoid one another. The lower limit of a, 
is of the order of one representing the extreme case where the junction 
segments are fixed at specific sites on the surface. It will also be 
noted that we have neglected the minor contribution to the entropy in 
the domain system arising from the possible arrangements of domains in 
space. It is easy to show that the entropy gained from this source is of 
the order of k/q per molecule, and is negligible since q is a relatively 
large number for systems of interest. 

The placement entropy difference ASp equals S, - S1 or 

when the lattice sites in a cell are equally accessible and 

as the lower bound when only one site per cell can be occupied by the 
junction. 

Restricted Volume Entropy Difference AS, 

In the preceeding section, the entropy change associated with the 
nonrandom placement (i.e., on the domain surface) of the junction seg- 
ment was evaluated without regard to the configurational statistics of 
the remaining segments of the chain. In this section we consider the 
remaining segments and determine the change in entropy resulting when 
constraints are applied to keep the A segments within the domain and 
the B segments outside. A s  has been mentioned previously, the diffu- 
sion equation offers a means to evaluate this entropy change: the con- 
straints become boundary values in the solution. In the present case, 
since we wish to remove those configurations which have chain ele- 
ments across the domain boundary, the boundary is taken as  a complete- 
ly  absorbing barrier. For the A chains, the diffusion equation gives (7) 
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the probability Q(oA; T, f, r < R) (per unit volume) that the second (free) 
end of the chain will be found at T when the fixed end is at f and all 
segments are at r < R as  

where jm(z) is the spherical Bessel function of order m, Pm(p) is the 
Legendre polynomial of order m, p = cos 8 ,  j,’(z) = dj,(z)/dz, and the 
B ’ s  are the positive roots of jrn(/3R) = 0. 

Correspondingly, for the B chains the probability that the free end of 
the chain is at  T when the fixed end is at F’and all segments are at 
r > R i s  

where J m ( z )  and Y,(z) are Bessel functions of the first and second 
kinds, respectively, of order m, and 

In the above equations the free ends of the chains are at the particu- 
la r  1ocationsT. Since in the domain system the free A chain end may be 
anywhere within the domain and the free B end may be anywhere outside 
of the domain, the above equations are integrated over the accessible 
volume to remove the constraints on the free ends. Thus, the desired 
probability P(oA; r’, r < R) that all OA chain elements are inside the do- 
main when the chain origin is at r’ becomes 

W 

= 2  s (-l)itl jo(inr’/R) exp I-ie neuAle/6Rei ( 7 4  
1-1 , 

The probability P(oB; r’, r > R) that all oB chain elements are outside 
the domain becomes 
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where Erfc (z) = 1 - Erf (z) and Erf (z) is the error function. 

and (7b) 
The loss in entropy due to restricted volume AS, is from eqs. (7a) 

and is easily evaluated given molecular sizes, domain sizes, and the 
placement r’ of the origins (junction segment) of the A and B chains.* 
Results are shown in Table I for various values of r’/R and for various 
ratios of the molecular sizes of the A and B blocks. For the domain 
radius R we have used R = (4/3) ((TA12)1’2 as established in a previous 
section. 

Elasticity Entropy Difference AS,, 

The positive interfacial free energy in the domain system wil l  tend to 
cause an increase in domain dimensions. However, the increase in di- 
mensions can occur only i f  the average dimensions of chains in the do- 
main are increased. This increase in dimensions over the unperturbed 
random flight values can be characterized by a (41, the ratio of per- 
turbed to unperturbed end-to-end chain distances, and gives an entropy 
decrease (4) (for chains that have one free end) of 

AS,, = -3/2 N A B k  (a2 - 1 - 2 In a) (9) 

In an earlier section dealing with domain sizes, it was noted that other 
chain perturbations must occur if a constant density of segments in  the 
domain is to be attained. We neglect the entropy decrease due to these 
perturbations for two reasons: (a) the fraction of the total number of 

*It wil l  be noted that the same R is used in the steps leading to eqs. 
(6) and (7) for both the A and B chains. Actually, in our model, the val- 
ues of R used for the two types of chains should differ by hR, where 
AR is the thickness of the interfacial region (AR 2 2 I R - r’ I). How- 
ever, electron micrographs of domains in block polymers show that the 
interface is relatively sharp, indicating that AR/R is small. The same 
R may then be used for both chains and also identified as the domain 
radius. In obtaining eq. (7b), we have neglected the volume excluded 
to a B chain by domains surrounding the one being considered. This 
can be shown to introduce a negligible error for the present model. 
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TABLE I 

Restricted Volume Entropy Decrease 
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0.90 0.0914 1 0.284 -3.7 

6 0.175 -4.2 

10 0.158 -4.3 

W 0.100 -4.7 

0.95 0.0440 1 0.142 -4.4 

6 0.0875 -4.8 

10 0.079 -4.9 

W 0.050 -5.4 

segments that must move to achieve constant density and the movement 
required (perturbation) are both small and (b) a satisfactory treatment 
of this (small) entropy decrease is not apparent. 

Enthalpy Change AH 

It has been mentioned that the enthalpy change for domain formation 
from a random mixture of block copolymer molecules will be taken as 
the negative of the heat of mixing of a simple mixture of the component 
blocks of the block copolymer. The pair-interaction model then gives 
AH as 

where x is the Flory interaction parameter (4) and + A  is the volume 
fraction of A segments, $A = oA/(uA + uB). 

Surface Free Energy 

If the residual interaction of the A and B segments at the domain in- 
terface is characterized by an interfacial energy y ,  the total surface 
free energy of the domain system becomes C, = i d  4nR2y, where i d  is 
the total number of domains. Using our previously established relation- 
ship between R and (uAl2)’l2, i.e.,  R = (413) ( o ~ l ~ ) ” ~  = (413) aKMA’’’, 

we obtain 
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where A is Avogadro’s Number and p is  the density. 

Free Energy of Domain Formation AG, 

The free energy change associated with the formation of domains from 
a random mixture of A-B molecules is from eqs. (6a). (8), (9), (10). and 
(11). 

3 9 ~ ~ ~ ’ ~ y  
2 4aKApkT 

- In P(u,; r’, r > R) + -  (a2 - 1 - 2 a )  + - 

where we have used the expression for the minimum placement entropy 
difference, i.e.,  eq. (6a). 

The chain expansion parameter a appears only in the terms relating to 
the interfacial energy (tending to increase a )  and the elastic free energy 
(tending to decrease a) .  The equilibrium value a ,  is obtained by differ- 
entiation and is 

which then leads to the minimum value of AGd as 

In order to evaluate a,,,, we require values of the interfacial tension y.  
A s  far as  the author is aware, only one report of the interfacial tensions 
between pairs of polymers has appeared in the literature (8). The poly- 
mer pairs and the results reported were nylon-polystyrene (5-6 dynes/ 
cm), nylon-polyethylene (6.4 dynedcm), and polyethylenephthalate- 
polyethylene (15 dyneslcm). In view of the lack of data on other sys- 
tems of interest, we shall merely show a m  for several representative val- 
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TABLE I1 

Equilibrium Expansion Factors a m  

103 1.04 1.18 1.40 

104 1.12 1.43 1.86 

3 104 1.20 1.62 2.16 

105 1.31 1.87 2.56 

ues of y .  Table I1 shows such a ,  data for y = 1, 5, and 15 dyneslcm 
for various values of MA. In the use of eq. (13), we have taken T = 

400°K, p = 1 g/cm3 and K = 7.5 x lo-’ (an average value from a number 
of investigators (9-13) for polystyrene). 

PREDICTED RADII OF POLYSTYRENE DOMAINS 

With the data in Table I1 and with eq. (4), we may predict the size of 
domains as a function of molecular weight. Figure 4 shows such results 
for polystyrene domains (the results shown are calculated for 400’K but 
they are not very sensitive to temperature). The curves are nearly lin- 
ear on a log-log plot, and give the following values of the exponent /3 
in an equation of the type R = kMp as a function of y .  

y ,  dyneslcm p 
1 0.55 
5 0.60 
15 0.65 

There are few data concerning domain sizes in the literature and no 
data concerning y for those polymers for which domain sizes have been 
reported. Hence, the direct comparison of theory and experiment is im- 
possible at the present time. However, it is still of interest to see if 
the theoretical results agree with experiment for reasonable values of y .  
The radii of the domains shown in Figure 1 are approximately 130 8 .  
This size would be predicted i f  y were slightly less than 1 dynelcm, a 
not unreasonable value for this system since the domains shown were 
formed in  the presence of a third component which was a good solvent 
for both component blocks and hence might be expected to lead a low 
value for the interfacial free energy. However, this “agreement” may 
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Fig. 4. Predicted polystyrene domain radii as a 
function of molecular weight. 

be somewhat fortuitous since this theory does not treat the possible ef- 
fects on domain size of the third (solvent) component that is  later re- 
moved. 

CRITERION FOR DOMAIN FORMATION 

It i s ,  of course, necessary that ACd be negative if domains are to 
form. Thus, from equation (14) the criterion for domain formation is 

(15) 
9 
2 

- In P(uB; r’, r > R) +- (a2 ,  - 1) - 3 In a, 

The left-hand side of this inequality is almost directly proportional to 
the molecular weight of the A block (when uB >> u A ,  as assumed), while 
the right-hand side is  only a slowly varying function of molecularweight. 
Thus, there will be a critical molecular weight of the A block above 
which the inequality is  satisfied and domains will form. However, if 
predictions are to be made of critical molecular weights, values of x 
(as well a s  y ,  K ,  etc., must be known). Unfortunately, there are few 
literature data of x for pairs of polymers and the few results that have 
been given differ greatly among themselves. For example, two results 
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have been reported for the polybutadiene-polystyrene system (14 J5). 
The reported values of x f l ,  where is the molar volume, differ by a 
factor of more than 200, and are obviously of little value in making pre- 
dictions. In order to circumvent this problem, we shall compare the 
ratios of predicted critical molecular weights for domain formation with 
predicted critical molecular weights for phase separation of a simple 
mixture of A and B homopolymers. In this way, we eliminate the neces- 
sity that x be known. 

gives the free energy of mixing as 
For a simple mixture of homopolymers, Flory-Huggins theory (4.16) 

where n A  and n B  are the numbers of A and B molecules, respectively. 
Since we wish to compare phase separation under conditions which are 
similar to those that occur in domain formation (equal numbers of A and 
B molecules) we take nA = nB and find that AG, = 0 when 

If we now divide eq. (15) by eq. (17), we find the critical ratio of uAd 
for domain formation to uAm for phase separation of the simple mixture 
to be 

9 - (a,' - 1) - 3 In a, 
2 

In ( U B / ~ A ~ )  
+ 

where we have taken uB >> uA. In Table 11, we see that for molecular 
weights M A  below about lo4  and for yless than 5 dyneslcm, a, will be 
less than about 1.5. Thus, under these conditions, the term (9/2)(a,' - 1) 
- 3 In a, will  vdry between 0 and 4.41. In Table I we see that 
In P(u,; r', r < R) +In P(uB; r ' , r >  R) (z bSv/NABk) is not a sensitive 
function of the ratio u B / u A  and for AR/R = 0.10 (rYR = 0.95) their sum 
may be taken as -5.0.  With these values eq. (18) becomes after collect- 
ing numerical values 
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where the term (6.3 - 10.7) represents a range of values arising when y 
is between 0 and 5 dynes/cm. For uB in the range 10' - lo4  (MB = 
l o 4  - loe), eq. (19) indicates that the ratio of critical molecular 
weights will be between about 2.5 - 5 (and would be even larger for 
larger values of y) .  The much larger molecular weight of the A block 
required for domain formation than for simple phase separation is, of 
course, the consequence of the additional configurational constraints 
and interfacial energies of a domain system. 

In his studies on the miscibility of polystyrene and polybutadiene, 
Paxton (15) reported that equal weight mixtures of polystyrene of M, = 

2720 and polybutadiene of M, = 1100 (both polymers unfractionated) 
were not miscible. Assuming the applicability of the Flory-Huggins 
equation [eq. (l6)I here, the minimum value of x/MB required for Pax- 
ton's results is 2 x lo-'. With this minimum value of x. we then find 
the results shown in Table I11 for the critical molecular weights M c  of 
polystyrene for phase separation from polybutadiene when equal numbers 
of molecules are mixed and the molecular weight of the polybutadiene is ' 
as  shown. 

TABLE I11 

Critical Molecular Weights for Phase Separation of Polystyrene 
and Polybutadiene x/MB = 2 x lo-' 

M B  M C  

104 1100 
l o 5  1970 
106 2900 

polybutadiene polystyrene 

Since we have predicted that the critical molecular weights for do- 
main formation would be at least 2.5 - 5 times larger than for simple 
phase separation, we would then predict that the critical molecular 
weights for domain formation in a styrene-butadiene block copolymer 
would be between about 5000 and 10,000 when the polybutadiene block 
molecular weight is of the order of 50,000. Data presented by Holden, 
Bishop and Legge (1) give some confirmation to these predictions. Their 
data show that the tensile strengths of A-B-A block copolymers of sty- 
rene and butadiene change from 150 psi for a 6000 - 81,000 - 6000 
molecular weight polymer to 3350 psi for a 10,000 - 53,000 - 10,000 
molecular weight polymer, i.e., a 20-fold increase in tensile strength 
when the polystyrene molecular weight is changed only from 6000 to 
10,000. We interpret these data as  evidence for the onset of domain 
formation in that molecular weight range, as predicted by present theory. 
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Although their data were obtained with A-B-A block copolymers and 
present theory deals with A-B polymers, i t  will be shown in a following 
paper that the thermodynamics of the A-B-A system is not greatly dif- 
ferent from the A-B system and hence the comparison of critical molec- 
ular weights from a theory of A-B polymers with data from A-B-A 
polymers is valid. 

The author expresses his appreciation to  Dr. S. Davison of these 
laboratories for many stimulating discussions about block copolymers 
and to Mr. N. 'A. Ross for the electron micrograph, Figure 1. 
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